feat: nnue train info now gives input tensor feature string
This commit is contained in:
parent
e27e18e482
commit
47a600cd80
@ -11,7 +11,7 @@ You should have received a copy of the GNU General Public License along with che
|
||||
Copyright © 2024 dogeystamp <dogeystamp@disroot.org>
|
||||
*/
|
||||
|
||||
//! Position evaluation.
|
||||
//! Static position evaluation (hand-crafted eval).
|
||||
|
||||
use crate::prelude::*;
|
||||
use core::cmp::{max, min};
|
||||
|
@ -19,6 +19,7 @@ use std::str::FromStr;
|
||||
|
||||
pub mod coordination;
|
||||
pub mod eval;
|
||||
pub mod nnue;
|
||||
pub mod fen;
|
||||
mod hash;
|
||||
pub mod movegen;
|
||||
|
@ -370,9 +370,11 @@ fn task_engine(tx_main: Sender<MsgToMain>, rx_engine: Receiver<MsgToEngine>) {
|
||||
let mut info: Vec<String> = Vec::new();
|
||||
if state.config.nnue_train_info {
|
||||
let is_quiet = chess_inator::search::is_quiescent_position(&board, eval);
|
||||
|
||||
let is_quiet = if is_quiet {"quiet"} else {"non-quiet"};
|
||||
info.push(format!("NNUETrainInfo {}", is_quiet))
|
||||
|
||||
let board_tensor = chess_inator::nnue::InputTensor::from_board(&board);
|
||||
|
||||
info.push(format!("NNUETrainInfo {} {}", is_quiet, {board_tensor}))
|
||||
}
|
||||
|
||||
tx_main
|
||||
|
91
src/nnue.rs
Normal file
91
src/nnue.rs
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
|
||||
This file is part of chess_inator.
|
||||
|
||||
chess_inator is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
|
||||
|
||||
chess_inator is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along with chess_inator. If not, see https://www.gnu.org/licenses/.
|
||||
|
||||
Copyright © 2024 dogeystamp <dogeystamp@disroot.org>
|
||||
*/
|
||||
|
||||
//! Static position evaluation (neural network based eval).
|
||||
//!
|
||||
//! # Neural net architecture
|
||||
//!
|
||||
//! The NNUE has the following layers:
|
||||
//!
|
||||
//! * Input (board features)
|
||||
//! * Hidden layer / accumulator (N neurons)
|
||||
//! * Output layer (Single neuron)
|
||||
//!
|
||||
//! The input layer is a multi-hot binary tensor that represents the board. It is a product of
|
||||
//! color (2), piece type (6) and piece position (64), giving a total of 768 elements representing
|
||||
//! for example "is there a _white_, _pawn_ at _e4_?". This information is not enough to represent
|
||||
//! the board, but is enough for static evaluation purposes. Our NNUE is only expected to run on
|
||||
//! quiescent positions, and our traditional minmax algorithm will take care of any exchanges, en
|
||||
//! passant, and other rules that can be mechanically applied.
|
||||
//!
|
||||
//! In the engine, the input layer is imaginary. Because of the nature of NNUE (efficiently
|
||||
//! updatable neural network), we only store the hidden layer's state, and whenever we want to flip
|
||||
//! a bit in the input layer, we directly add/subtract the corresponding weight from the hidden
|
||||
//! layer.
|
||||
|
||||
use crate::prelude::*;
|
||||
use std::fmt::Display;
|
||||
|
||||
/// Size of the input feature tensor.
|
||||
pub const INP_TENSOR_SIZE: usize = N_COLORS * N_PIECES * N_SQUARES;
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct InputTensor([bool; INP_TENSOR_SIZE]);
|
||||
|
||||
/// Input tensor for the NNUE.
|
||||
///
|
||||
/// Note that this tensor does not exist at runtime, only during training.
|
||||
impl InputTensor {
|
||||
/// Calculate index within the input tensor of a piece/color/square combination.
|
||||
pub fn idx(pc: ColPiece, sq: Square) -> usize {
|
||||
let col = pc.col as usize;
|
||||
let pc = pc.pc as usize;
|
||||
let sq = sq.0 as usize;
|
||||
|
||||
let ret = col * (N_PIECES * N_SQUARES) + pc * (N_SQUARES) + sq;
|
||||
debug_assert!((0..INP_TENSOR_SIZE).contains(&ret));
|
||||
ret
|
||||
}
|
||||
|
||||
/// Create the tensor from a board.
|
||||
pub fn from_board(board: &Board) -> Self {
|
||||
let mut tensor = [false; INP_TENSOR_SIZE];
|
||||
for sq in Board::squares() {
|
||||
if let Some(pc) = board.get_piece(sq) {
|
||||
let idx = Self::idx(pc, sq);
|
||||
tensor[idx] = true;
|
||||
}
|
||||
}
|
||||
|
||||
InputTensor(tensor)
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for InputTensor {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
let str = String::from_iter(self.0.map(|x| if x { '1' } else { '0' }));
|
||||
write!(f, "{}", str)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
fn test_to_binary_tensor() {
|
||||
// more of a sanity check than a test
|
||||
let board = Board::from_fen("8/8/8/8/8/8/8/1b6 w - - 0 1").unwrap();
|
||||
let tensor = InputTensor::from_board(&board);
|
||||
let mut expected = [false; INP_TENSOR_SIZE];
|
||||
expected[1 + 1 + INP_TENSOR_SIZE / 2] = true;
|
||||
assert_eq!(tensor.0, expected);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user