feat: better integrate nnue train pipeline
This commit is contained in:
parent
e18464eceb
commit
4bd2fd1d9a
20
nnue/README.md
Normal file
20
nnue/README.md
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
# NNUE training tools
|
||||||
|
|
||||||
|
Python training pipeline for the evaluation neural network.
|
||||||
|
See the docstring in `src/nnue.rs` for information about the architecture of the NNUE.
|
||||||
|
The network is trained on both self-play games, and its games on Lichess.
|
||||||
|
Both of these sources provide games in PGN format.
|
||||||
|
|
||||||
|
This folder includes the following scripts:
|
||||||
|
- `batch_pgn_data.py`: Combine and convert big PGN files into small chunked files.
|
||||||
|
- `process_pgn_data.py`: Convert PGN data into a format suitable for training.
|
||||||
|
|
||||||
|
Example training pipeline:
|
||||||
|
```bash
|
||||||
|
# chunk all the PGN files in `games/`. outputs by default to `batches/batch%d.pgn`.
|
||||||
|
./batch_pgn_data.py games/*.pgn
|
||||||
|
|
||||||
|
# analyze batches 0 to 20 to turn them into training data. outputs by default to train_data/batch%d.tsv.gz.
|
||||||
|
# set max-workers to the number of hardware threads / cores you have.
|
||||||
|
./process_pgn_data.py --engine ../target/release/chess_inator --max-workers 8 batches/batch{0..20}.pgn
|
||||||
|
```
|
4
nnue/batch_pgn_data.py
Normal file → Executable file
4
nnue/batch_pgn_data.py
Normal file → Executable file
@ -43,8 +43,8 @@ def batch_games():
|
|||||||
output_folder: Path = args.output_folder
|
output_folder: Path = args.output_folder
|
||||||
output_folder.mkdir(exist_ok=True)
|
output_folder.mkdir(exist_ok=True)
|
||||||
for idx, batch in enumerate(itertools.batched(generate_games(), args.batch_size)):
|
for idx, batch in enumerate(itertools.batched(generate_games(), args.batch_size)):
|
||||||
with (output_folder / f"batch{idx:04}.pgn").open("w") as f:
|
with (output_folder / f"batch{idx}.pgn").open("w") as f:
|
||||||
for game in batch:
|
for game in batch:
|
||||||
f.write(str(game) + "\n")
|
f.write(str(game) + "\n\n")
|
||||||
|
|
||||||
batch_games()
|
batch_games()
|
||||||
|
102
nnue/process_pgn_data.py
Normal file → Executable file
102
nnue/process_pgn_data.py
Normal file → Executable file
@ -2,7 +2,6 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
Processes PGN game data into a tsv format suitable for training.
|
Processes PGN game data into a tsv format suitable for training.
|
||||||
Inputs from stdin, outputs to stdout.
|
|
||||||
|
|
||||||
Output columns:
|
Output columns:
|
||||||
- FEN (for reference)
|
- FEN (for reference)
|
||||||
@ -27,18 +26,26 @@ from asyncio import Queue, TaskGroup, create_task, run, sleep
|
|||||||
import logging
|
import logging
|
||||||
import datetime
|
import datetime
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
import gzip
|
||||||
import csv
|
import csv
|
||||||
|
|
||||||
import chess
|
import chess
|
||||||
import chess.engine
|
import chess.engine
|
||||||
from typing import AsyncIterator, Literal
|
from typing import AsyncIterator, Literal
|
||||||
from chess import pgn
|
from chess import pgn
|
||||||
from sys import stdin, stdout
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--log",
|
||||||
|
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
|
||||||
|
default="INFO",
|
||||||
|
help="Sets log level.",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--engine",
|
"--engine",
|
||||||
help="Set the file path of the chess_inator engine used to analyze the positions.",
|
help="Set the file path of the chess_inator engine used to analyze the positions.",
|
||||||
@ -50,25 +57,39 @@ parser.add_argument(
|
|||||||
default=min(4, multiprocessing.cpu_count()),
|
default=min(4, multiprocessing.cpu_count()),
|
||||||
type=int,
|
type=int,
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--preserve-partial",
|
||||||
|
action="store_true",
|
||||||
|
help="Keep output files that have not been fully written. These files may confuse this script when resuming operations.",
|
||||||
|
)
|
||||||
|
parser.add_argument("files", nargs="+", type=Path)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
logging.basicConfig(level=logging.INFO)
|
logging.basicConfig(level=getattr(logging, str.upper(args.log)))
|
||||||
|
|
||||||
|
|
||||||
"""Skip these many plies from the start (avoid training on opening)."""
|
"""Skip these many plies from the start (avoid training on opening)."""
|
||||||
SKIP_PLIES: int = 20
|
SKIP_PLIES: int = 20
|
||||||
|
|
||||||
"""Time limit in seconds for each position to be analyzed."""
|
"""Time limit in seconds for each position to be analyzed."""
|
||||||
TIME_LIMIT: float = 5
|
TIME_LIMIT: float = 3
|
||||||
|
|
||||||
|
|
||||||
output_queue: Queue[tuple[str, str, int, Literal[-1, 0, 1]]] = Queue()
|
output_queue: Queue[tuple[str, str, int, Literal[-1, 0, 1]]] = Queue()
|
||||||
|
|
||||||
|
|
||||||
async def load_games():
|
# stats for progress
|
||||||
|
completed = 0
|
||||||
|
discarded = 0
|
||||||
|
current_outp: Path | None = None
|
||||||
|
start_time = datetime.datetime.now()
|
||||||
|
|
||||||
|
|
||||||
|
async def load_games(file: Path):
|
||||||
"""Load a PGN file and divide up the games for the workers to process."""
|
"""Load a PGN file and divide up the games for the workers to process."""
|
||||||
while game := pgn.read_game(stdin):
|
with open(file) as f:
|
||||||
|
while game := pgn.read_game(f):
|
||||||
yield game
|
yield game
|
||||||
|
|
||||||
|
|
||||||
@ -101,7 +122,14 @@ async def worker(game_generator: AsyncIterator[pgn.Game]) -> None:
|
|||||||
|
|
||||||
skipped = 0
|
skipped = 0
|
||||||
|
|
||||||
logging.info("Processing game %s, %s (%s) between %s as White and %s as Black.", game.headers["Event"], game.headers["Site"], game.headers["Date"], game.headers["White"], game.headers["Black"])
|
logging.info(
|
||||||
|
"Processing game %s, %s (%s) between %s as White and %s as Black.",
|
||||||
|
game.headers["Event"],
|
||||||
|
game.headers["Site"],
|
||||||
|
game.headers["Date"],
|
||||||
|
game.headers["White"],
|
||||||
|
game.headers["Black"],
|
||||||
|
)
|
||||||
|
|
||||||
for move in game.mainline_moves():
|
for move in game.mainline_moves():
|
||||||
board.push(move)
|
board.push(move)
|
||||||
@ -123,6 +151,8 @@ async def worker(game_generator: AsyncIterator[pgn.Game]) -> None:
|
|||||||
raise RuntimeError(f"Unexpected output from engine: {info_str}")
|
raise RuntimeError(f"Unexpected output from engine: {info_str}")
|
||||||
|
|
||||||
if quiet == "non-quiet":
|
if quiet == "non-quiet":
|
||||||
|
global discarded
|
||||||
|
discarded += 1
|
||||||
logging.debug("discarded as non-quiet: '%s'", board.fen())
|
logging.debug("discarded as non-quiet: '%s'", board.fen())
|
||||||
continue
|
continue
|
||||||
elif quiet != "quiet":
|
elif quiet != "quiet":
|
||||||
@ -131,9 +161,9 @@ async def worker(game_generator: AsyncIterator[pgn.Game]) -> None:
|
|||||||
await output_queue.put((board.fen(), tensor, int(eval_abs), wdl))
|
await output_queue.put((board.fen(), tensor, int(eval_abs), wdl))
|
||||||
|
|
||||||
|
|
||||||
async def analyse_games():
|
async def analyse_games(file: Path):
|
||||||
"""Task that manages reading PGNs and analyzing them."""
|
"""Task that manages reading PGNs and analyzing them."""
|
||||||
games_generator = load_games()
|
games_generator = load_games(file)
|
||||||
|
|
||||||
async with TaskGroup() as tg:
|
async with TaskGroup() as tg:
|
||||||
worker_count: int = min(args.max_workers, multiprocessing.cpu_count())
|
worker_count: int = min(args.max_workers, multiprocessing.cpu_count())
|
||||||
@ -142,18 +172,14 @@ async def analyse_games():
|
|||||||
tg.create_task(worker(games_generator))
|
tg.create_task(worker(games_generator))
|
||||||
|
|
||||||
|
|
||||||
completed = 0
|
async def output_rows(outp_file: Path):
|
||||||
start_time = datetime.datetime.now()
|
|
||||||
|
|
||||||
|
|
||||||
async def output_rows():
|
|
||||||
"""TSV writer task."""
|
"""TSV writer task."""
|
||||||
|
|
||||||
writer = csv.writer(stdout, delimiter="\t")
|
with gzip.open(outp_file, "wt") as f:
|
||||||
|
writer = csv.writer(f, delimiter="\t")
|
||||||
while True:
|
while True:
|
||||||
row = await output_queue.get()
|
row = await output_queue.get()
|
||||||
writer.writerow(row)
|
writer.writerow(row)
|
||||||
stdout.flush()
|
|
||||||
output_queue.task_done()
|
output_queue.task_done()
|
||||||
global completed
|
global completed
|
||||||
completed += 1
|
completed += 1
|
||||||
@ -164,20 +190,56 @@ async def status_logger():
|
|||||||
while True:
|
while True:
|
||||||
await sleep(5)
|
await sleep(5)
|
||||||
logging.info(
|
logging.info(
|
||||||
"Completed %d rows in %f seconds.",
|
"Completed %d rows in %f seconds. Discarded %d non-quiet positions.",
|
||||||
completed,
|
completed,
|
||||||
(datetime.datetime.now() - start_time).total_seconds(),
|
(datetime.datetime.now() - start_time).total_seconds(),
|
||||||
|
discarded,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
async def main():
|
async def main():
|
||||||
analyse_task = create_task(analyse_games())
|
|
||||||
output_task = create_task(output_rows())
|
|
||||||
status_task = create_task(status_logger())
|
status_task = create_task(status_logger())
|
||||||
|
|
||||||
|
outp_dir = Path("train_data")
|
||||||
|
outp_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
any_file = False
|
||||||
|
skipped = False
|
||||||
|
|
||||||
|
for file in args.files:
|
||||||
|
file: Path
|
||||||
|
|
||||||
|
outp_file = outp_dir / file.with_suffix(".tsv.gz").name
|
||||||
|
|
||||||
|
if outp_file.exists():
|
||||||
|
skipped = True
|
||||||
|
continue
|
||||||
|
|
||||||
|
any_file = True
|
||||||
|
|
||||||
|
if skipped:
|
||||||
|
logging.info("Resuming at file '%s'.", file)
|
||||||
|
else:
|
||||||
|
logging.info("Reading file '%s'.", file)
|
||||||
|
|
||||||
|
global current_outp
|
||||||
|
current_outp = outp_file
|
||||||
|
|
||||||
|
output_task = create_task(output_rows(outp_file))
|
||||||
|
analyse_task = create_task(analyse_games(file))
|
||||||
await analyse_task
|
await analyse_task
|
||||||
output_task.cancel()
|
output_task.cancel()
|
||||||
|
|
||||||
|
if not any_file:
|
||||||
|
logging.warning("Nothing to do. All input files have outputs already.")
|
||||||
|
|
||||||
status_task.cancel()
|
status_task.cancel()
|
||||||
|
|
||||||
|
|
||||||
run(main())
|
try:
|
||||||
|
run(main())
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
logging.critical("shutting down.")
|
||||||
|
if current_outp and not args.preserve_partial:
|
||||||
|
logging.critical("discarding partial output file %s", current_outp)
|
||||||
|
current_outp.unlink()
|
||||||
|
Loading…
Reference in New Issue
Block a user