diff --git a/.gitignore b/.gitignore index a2ee6b4..abe926c 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,4 @@ /target TODO.txt +nnue/batches +nnue/venv diff --git a/nnue/batch_pgn_data.py b/nnue/batch_pgn_data.py new file mode 100644 index 0000000..94fddd1 --- /dev/null +++ b/nnue/batch_pgn_data.py @@ -0,0 +1,50 @@ +#!/usr/bin/env python + +""" +Batch PGN data into files, since the training data pipeline can't resume processing within a single file. +""" + +# /// script +# requires-python = ">=3.12" +# dependencies = [ +# "chess", +# ] +# /// + +from typing import Iterator +import chess.pgn +import argparse +import itertools + +from pathlib import Path + +"""Games to include per file in output.""" + +parser = argparse.ArgumentParser() +parser.add_argument("files", nargs="+", type=Path) +parser.add_argument("--batch-size", type=int, help="Number of games to save in each output file.", default=8) +parser.add_argument("--output-folder", type=Path, help="Folder to save batched games in.", default=Path("batches")) +args = parser.parse_args() + +def generate_games_in_file(path: Path) -> Iterator[chess.pgn.Game]: + """Read games from a single PGN file.""" + with open(path) as f: + while game := chess.pgn.read_game(f): + game.headers["PGNPath"] = str(path) + yield game + +def generate_games() -> Iterator[chess.pgn.Game]: + """Read games from all files.""" + for path in args.files: + yield from generate_games_in_file(path) + +def batch_games(): + """Write games in batches.""" + output_folder: Path = args.output_folder + output_folder.mkdir(exist_ok=True) + for idx, batch in enumerate(itertools.batched(generate_games(), args.batch_size)): + with (output_folder / f"batch{idx:04}.pgn").open("w") as f: + for game in batch: + f.write(str(game) + "\n") + +batch_games() diff --git a/nnue/process_pgn_data.py b/nnue/process_pgn_data.py new file mode 100644 index 0000000..d177da1 --- /dev/null +++ b/nnue/process_pgn_data.py @@ -0,0 +1,183 @@ +#!/usr/bin/env python + +""" +Processes PGN game data into a tsv format suitable for training. +Inputs from stdin, outputs to stdout. + +Output columns: +- FEN (for reference) +- ALL 768-bit binary string representing the position +- Evaluation (centipawns) from white perspective +- Result of the game (-1, 0, 1) + +This script depends on the `chess` package. +Install it, or run this script using `pipx run process_pgn_data.py`. +The script also depends on the chess_inator engine for analysis and filtering. +""" + +# /// script +# requires-python = ">=3.11" +# dependencies = [ +# "chess", +# ] +# /// + +import argparse +from asyncio import Queue, TaskGroup, create_task, run, sleep +import logging +import datetime +import multiprocessing +import csv + +import chess +import chess.engine +from typing import AsyncIterator, Literal +from chess import pgn +from sys import stdin, stdout +from pathlib import Path + +parser = argparse.ArgumentParser( + description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter +) +parser.add_argument( + "--engine", + help="Set the file path of the chess_inator engine used to analyze the positions.", + type=Path, +) +parser.add_argument( + "--max-workers", + help="Max concurrent workers to analyse games with (limit this to your hardware thread count).", + default=min(4, multiprocessing.cpu_count()), + type=int, +) +args = parser.parse_args() + + +logging.basicConfig(level=logging.INFO) + + +"""Skip these many plies from the start (avoid training on opening).""" +SKIP_PLIES: int = 20 + +"""Time limit in seconds for each position to be analyzed.""" +TIME_LIMIT: float = 5 + + +output_queue: Queue[tuple[str, str, int, Literal[-1, 0, 1]]] = Queue() + + +async def load_games(): + """Load a PGN file and divide up the games for the workers to process.""" + while game := pgn.read_game(stdin): + yield game + + +async def worker(game_generator: AsyncIterator[pgn.Game]) -> None: + """ + Single worker that analyzes whole games. + + Code pattern taken from https://stackoverflow.com/a/54975674. + + Puts rows of output into a global queue. + """ + transport, engine = await chess.engine.popen_uci(args.engine) + await engine.configure(dict(NNUETrainInfo="true")) + + async for game in game_generator: + wdl: int | None = None + + match game.headers["Result"]: + case "1-0": + wdl = 1 + case "0-1": + wdl = -1 + case "1/2-1/2": + wdl = 0 + case other_result: + logging.error("invalid 'Result' header: '%s'", other_result) + continue + + board = game.board() + + skipped = 0 + + logging.info("Processing game %s, %s (%s) between %s as White and %s as Black.", game.headers["Event"], game.headers["Site"], game.headers["Date"], game.headers["White"], game.headers["Black"]) + + for move in game.mainline_moves(): + board.push(move) + if skipped < SKIP_PLIES: + skipped += 1 + continue + result = await engine.play( + board, + chess.engine.Limit(time=TIME_LIMIT), + info=chess.engine.INFO_ALL, + game=game, + ) + + info_str = result.info.get("string") + if not info_str: + raise RuntimeError("Could not analyze position with engine.") + (name, quiet, eval_abs, tensor) = info_str.split() + if not name == "NNUETrainInfo": + raise RuntimeError(f"Unexpected output from engine: {info_str}") + + if quiet == "non-quiet": + logging.debug("discarded as non-quiet: '%s'", board.fen()) + continue + elif quiet != "quiet": + raise RuntimeError(f"Unexpected output from engine: {info_str}") + + await output_queue.put((board.fen(), tensor, int(eval_abs), wdl)) + + +async def analyse_games(): + """Task that manages reading PGNs and analyzing them.""" + games_generator = load_games() + + async with TaskGroup() as tg: + worker_count: int = min(args.max_workers, multiprocessing.cpu_count()) + logging.info("Using %d concurrent worker tasks.", worker_count) + for i in range(worker_count): + tg.create_task(worker(games_generator)) + + +completed = 0 +start_time = datetime.datetime.now() + + +async def output_rows(): + """TSV writer task.""" + + writer = csv.writer(stdout, delimiter="\t") + while True: + row = await output_queue.get() + writer.writerow(row) + stdout.flush() + output_queue.task_done() + global completed + completed += 1 + + +async def status_logger(): + """Periodically print status.""" + while True: + await sleep(5) + logging.info( + "Completed %d rows in %f seconds.", + completed, + (datetime.datetime.now() - start_time).total_seconds(), + ) + + +async def main(): + analyse_task = create_task(analyse_games()) + output_task = create_task(output_rows()) + status_task = create_task(status_logger()) + + await analyse_task + output_task.cancel() + status_task.cancel() + + +run(main())