/* This file is part of chess_inator. chess_inator is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. chess_inator is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with chess_inator. If not, see https://www.gnu.org/licenses/. Copyright © 2024 dogeystamp */ //! Game-tree search. use crate::prelude::*; use crate::hash::ZobristTable; use std::cmp::{max, min}; use std::sync::mpsc; use std::time::{Instant, Duration}; // min can't be represented as positive const EVAL_WORST: EvalInt = -(EvalInt::MAX); const EVAL_BEST: EvalInt = EvalInt::MAX; #[cfg(test)] mod test_eval_int { use super::*; #[test] fn test_eval_worst_best_symm() { // int limits will bite you if you don't test this assert_eq!(EVAL_WORST, -EVAL_BEST); assert_eq!(-EVAL_WORST, EVAL_BEST); } } /// Eval in the context of search. #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum SearchEval { /// Mate in |n| - 1 half moves, negative for own mate. Checkmate(i8), /// Centipawn score. Centipawns(EvalInt), /// Search was hard-stopped. Stopped, } impl SearchEval { /// Flip side, and increment the "mate in n" counter. fn increment(self) -> Self { match self { SearchEval::Checkmate(n) => { debug_assert_ne!(n, 0); if n < 0 { Self::Checkmate(-(n - 1)) } else { Self::Checkmate(-(n + 1)) } } SearchEval::Centipawns(eval) => Self::Centipawns(-eval), SearchEval::Stopped => SearchEval::Stopped, } } } impl From for EvalInt { fn from(value: SearchEval) -> Self { match value { SearchEval::Checkmate(n) => { debug_assert_ne!(n, 0); if n < 0 { EVAL_WORST - EvalInt::from(n) } else { EVAL_BEST - EvalInt::from(n) } } SearchEval::Centipawns(eval) => eval, SearchEval::Stopped => panic!("Attempted to evaluate a halted search"), } } } impl Ord for SearchEval { fn cmp(&self, other: &Self) -> std::cmp::Ordering { let e1 = EvalInt::from(*self); let e2 = EvalInt::from(*other); e1.cmp(&e2) } } impl PartialOrd for SearchEval { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } /// Configuration for the gametree search. #[derive(Clone, Copy, Debug)] pub struct SearchConfig { /// Enable alpha-beta pruning. pub alpha_beta_on: bool, /// Limit regular search depth pub depth: usize, /// Enable transposition table. pub enable_trans_table: bool, /// Transposition table size (2^n where this is n) pub transposition_size: usize, } impl Default for SearchConfig { fn default() -> Self { SearchConfig { alpha_beta_on: true, // try to make this even to be more conservative and avoid horizon problem depth: 10, enable_trans_table: true, transposition_size: 24, } } } /// If a move is a capture, return which piece is capturing what. fn move_get_capture(board: &mut Board, mv: &Move) -> Option<(Piece, Piece)> { // TODO: en passant board .get_piece(mv.dest) .map(|cap_pc| (board.get_piece(mv.src).unwrap().into(), cap_pc.into())) } /// Least valuable victim, most valuable attacker heuristic for captures. fn lvv_mva_eval(src_pc: Piece, cap_pc: Piece) -> EvalInt { let pc_values = [500, 300, 300, 20000, 900, 100]; pc_values[cap_pc as usize] - pc_values[src_pc as usize] } /// Assign a priority to a move based on how promising it is. fn move_priority(board: &mut Board, mv: &Move) -> EvalInt { // move eval let mut eval: EvalInt = 0; if let Some((src_pc, cap_pc)) = move_get_capture(board, mv) { // least valuable victim, most valuable attacker eval += lvv_mva_eval(src_pc, cap_pc) } eval } /// Search the game tree to find the absolute (positive good) move and corresponding eval for the /// current player. /// /// # Arguments /// /// * board: board position to analyze. /// * depth: how deep to analyze the game tree. /// * alpha: best score (absolute, from current player perspective) guaranteed for current player. /// * beta: best score (absolute, from current player perspective) guaranteed for other player. /// /// # Returns /// /// The best line (in reverse move order), and its corresponding absolute eval for the current player. fn minmax( board: &mut Board, state: &mut EngineState, depth: usize, alpha: Option, beta: Option, ) -> (Vec, SearchEval) { // these operations are relatively expensive, so only run them occasionally if state.node_count % (1 << 16) == 0 { // respect the hard stop if given match state.rx_engine.try_recv() { Ok(msg) => match msg { MsgToEngine::Go(_) => panic!("received go while thinking"), MsgToEngine::Stop => { return (Vec::new(), SearchEval::Stopped); } MsgToEngine::NewGame => panic!("received newgame while thinking"), }, Err(e) => match e { mpsc::TryRecvError::Empty => {} mpsc::TryRecvError::Disconnected => panic!("thread Main stopped"), }, } if let Some(hard) = state.time_lims.hard { if Instant::now() > hard { return (Vec::new(), SearchEval::Stopped); } } } // default to worst, then gradually improve let mut alpha = alpha.unwrap_or(EVAL_WORST); // our best is their worst let beta = beta.unwrap_or(EVAL_BEST); if depth == 0 { let eval = board.eval() * EvalInt::from(board.turn.sign()); return (Vec::new(), SearchEval::Centipawns(eval)); } let mut mvs: Vec<_> = board .gen_moves() .into_iter() .collect::>() .into_iter() .map(|mv| (move_priority(board, &mv), mv)) .collect(); // get transposition table entry if state.config.enable_trans_table { if let Some(entry) = &state.cache[board.zobrist] { // the entry has a deeper knowledge than we do, so follow its best move exactly instead of // just prioritizing what it thinks is best if entry.depth >= depth { // we don't save PV line in transposition table, so no information on that return (vec![entry.best_move], entry.eval); } mvs.push((EVAL_BEST, entry.best_move)); } } // sort moves by decreasing priority mvs.sort_unstable_by_key(|mv| -mv.0); let mut abs_best = SearchEval::Centipawns(EVAL_WORST); let mut best_move: Option = None; let mut best_continuation: Vec = Vec::new(); if mvs.is_empty() { if board.is_check(board.turn) { return (Vec::new(), SearchEval::Checkmate(-1)); } else { // stalemate return (Vec::new(), SearchEval::Centipawns(0)); } } for (_priority, mv) in mvs { let anti_mv = mv.make(board); let (continuation, score) = minmax(board, state, depth - 1, Some(-beta), Some(-alpha)); // propagate hard stops if matches!(score, SearchEval::Stopped) { return (Vec::new(), SearchEval::Stopped); } let abs_score = score.increment(); if abs_score > abs_best { abs_best = abs_score; best_move = Some(mv); best_continuation = continuation; } alpha = max(alpha, abs_best.into()); anti_mv.unmake(board); if alpha >= beta && state.config.alpha_beta_on { // alpha-beta prune. // // Beta represents the best eval that the other player can get in sibling branches // (different moves in the parent node). Alpha > beta means the eval here is _worse_ // for the other player, so they will never make the move that leads into this branch. // Therefore, we stop evaluating this branch at all. break; } } if let Some(best_move) = best_move { best_continuation.push(best_move); if state.config.enable_trans_table { state.cache[board.zobrist] = Some(TranspositionEntry { best_move, eval: abs_best, depth, }); } } state.node_count += 1; (best_continuation, abs_best) } #[derive(Clone, Copy, Debug)] pub struct TranspositionEntry { /// best move found last time best_move: Move, /// last time's eval eval: SearchEval, /// depth of this entry depth: usize, } pub type TranspositionTable = ZobristTable; /// Iteratively deepen search until it is stopped. fn iter_deep(board: &mut Board, state: &mut EngineState) -> (Vec, SearchEval) { // always preserve two lines (1 is most recent) let (mut line1, mut eval1) = minmax(board, state, 1, None, None); let (mut line2, mut eval2) = (line1.clone(), eval1); for depth in 2..=state.config.depth { let (line, eval) = minmax(board, state, depth, None, None); let mut have_to_ret = false; // depth of the line we're about to return. // our knock-off "quiescence" is skeptical of odd depths, so we need to know this. let mut ret_depth = depth; if matches!(eval, SearchEval::Stopped) { ret_depth -= 1; have_to_ret = true; } else { (line2, eval2) = (line1, eval1); (line1, eval1) = (line, eval); if let Some(soft_lim) = state.time_lims.soft { if Instant::now() > soft_lim { have_to_ret = true; } } } if have_to_ret { if ret_depth & 1 == 1 && (EvalInt::from(eval1) - EvalInt::from(eval2) > 300) { // be skeptical if we move last and we suddenly earn a lot of // centipawns. this may be a sign of horizon problem return (line2, eval2); } else { return (line1, eval1); } } } (line1, eval1) } /// Deadlines for the engine to think of a move. #[derive(Default)] pub struct TimeLimits { /// The engine must respect this time limit. It will abort if this deadline is passed. pub hard: Option, pub soft: Option, } impl TimeLimits { /// Make time limits based on wtime, btime (but color-independent). /// /// Also takes in eval metrics, for instance to avoid wasting too much time in the opening. pub fn from_ourtime_theirtime(ourtime_ms: u64, _theirtime_ms: u64, eval: EvalMetrics) -> TimeLimits { // hard timeout (max) let mut hard_ms = 100_000; // soft timeout (max) let mut soft_ms = 1_200; // if we have more than 5 minutes, and we're out of the opening, we can afford to think longer if ourtime_ms > 300_000 && eval.phase <= 13 { soft_ms = 3_000 } let factor = if ourtime_ms > 5_000 { 10 } else { 40 }; hard_ms = min(ourtime_ms / factor, hard_ms); soft_ms = min(ourtime_ms / 50, soft_ms); let hard_limit = Instant::now() + Duration::from_millis(hard_ms); let soft_limit = Instant::now() + Duration::from_millis(soft_ms); TimeLimits { hard: Some(hard_limit), soft: Some(soft_limit), } } } /// Helper type to avoid retyping the same arguments into every function prototype. /// /// This should be owned outside the actual thinking part so that the engine can remember state /// between moves. pub struct EngineState { pub config: SearchConfig, /// Main -> Engine channel receiver pub rx_engine: mpsc::Receiver, pub cache: TranspositionTable, /// Nodes traversed (i.e. number of times minmax called) pub node_count: usize, pub time_lims: TimeLimits, } impl EngineState { pub fn new( config: SearchConfig, interface: mpsc::Receiver, cache: TranspositionTable, time_lims: TimeLimits, ) -> Self { Self { config, rx_engine: interface, cache, node_count: 0, time_lims, } } /// Wipe state between different games. /// /// Configuration is preserved. pub fn wipe_state(&mut self) { self.cache = TranspositionTable::new(self.config.transposition_size); self.node_count = 0; } } /// Find the best line (in reverse order) and its evaluation. pub fn best_line(board: &mut Board, engine_state: &mut EngineState) -> (Vec, SearchEval) { let (line, eval) = iter_deep(board, engine_state); (line, eval) } /// Find the best move. pub fn best_move(board: &mut Board, engine_state: &mut EngineState) -> Option { let (line, _eval) = best_line(board, engine_state); line.last().copied() }