chess_inator/src/search.rs
2024-11-23 19:13:02 -05:00

367 lines
11 KiB
Rust

/*
This file is part of chess_inator.
chess_inator is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
chess_inator is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with chess_inator. If not, see https://www.gnu.org/licenses/.
Copyright © 2024 dogeystamp <dogeystamp@disroot.org>
*/
//! Game-tree search.
use crate::eval::{Eval, EvalInt};
use crate::hash::ZobristTable;
use crate::movegen::{Move, MoveGen};
use crate::{Board, Piece};
use std::cmp::max;
use std::sync::mpsc;
// min can't be represented as positive
const EVAL_WORST: EvalInt = -(EvalInt::MAX);
const EVAL_BEST: EvalInt = EvalInt::MAX;
#[cfg(test)]
mod test_eval_int {
use super::*;
#[test]
fn test_eval_worst_best_symm() {
// int limits will bite you if you don't test this
assert_eq!(EVAL_WORST, -EVAL_BEST);
assert_eq!(-EVAL_WORST, EVAL_BEST);
}
}
/// Eval in the context of search.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum SearchEval {
/// Mate in |n| - 1 half moves, negative for own mate.
Checkmate(i8),
/// Centipawn score.
Centipawns(EvalInt),
}
impl SearchEval {
/// Flip side, and increment the "mate in n" counter.
fn increment(self) -> Self {
match self {
SearchEval::Checkmate(n) => {
debug_assert_ne!(n, 0);
if n < 0 {
Self::Checkmate(-(n - 1))
} else {
Self::Checkmate(-(n + 1))
}
}
SearchEval::Centipawns(eval) => Self::Centipawns(-eval),
}
}
}
impl From<SearchEval> for EvalInt {
fn from(value: SearchEval) -> Self {
match value {
SearchEval::Checkmate(n) => {
debug_assert_ne!(n, 0);
if n < 0 {
EVAL_WORST - EvalInt::from(n)
} else {
EVAL_BEST - EvalInt::from(n)
}
}
SearchEval::Centipawns(eval) => eval,
}
}
}
impl Ord for SearchEval {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let e1 = EvalInt::from(*self);
let e2 = EvalInt::from(*other);
e1.cmp(&e2)
}
}
impl PartialOrd for SearchEval {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
/// Configuration for the gametree search.
#[derive(Clone, Copy, Debug)]
pub struct SearchConfig {
/// Enable alpha-beta pruning.
alpha_beta_on: bool,
/// Limit regular search depth
depth: usize,
}
impl Default for SearchConfig {
fn default() -> Self {
SearchConfig {
alpha_beta_on: true,
depth: 10,
}
}
}
/// If a move is a capture, return which piece is capturing what.
fn move_get_capture(board: &mut Board, mv: &Move) -> Option<(Piece, Piece)> {
// TODO: en passant
board
.get_piece(mv.dest)
.map(|cap_pc| (board.get_piece(mv.src).unwrap().into(), cap_pc.into()))
}
/// Least valuable victim, most valuable attacker heuristic for captures.
fn lvv_mva_eval(src_pc: Piece, cap_pc: Piece) -> EvalInt {
let pc_values = [500, 300, 300, 20000, 900, 100];
pc_values[cap_pc as usize] - pc_values[src_pc as usize]
}
/// Assign a priority to a move based on how promising it is.
fn move_priority(board: &mut Board, mv: &Move) -> EvalInt {
// move eval
let mut eval: EvalInt = 0;
if let Some((src_pc, cap_pc)) = move_get_capture(board, mv) {
// least valuable victim, most valuable attacker
eval += lvv_mva_eval(src_pc, cap_pc)
}
eval
}
/// Search the game tree to find the absolute (positive good) move and corresponding eval for the
/// current player.
///
/// # Arguments
///
/// * board: board position to analyze.
/// * depth: how deep to analyze the game tree.
/// * alpha: best score (absolute, from current player perspective) guaranteed for current player.
/// * beta: best score (absolute, from current player perspective) guaranteed for other player.
///
/// # Returns
///
/// The best line (in reverse move order), and its corresponding absolute eval for the current player.
fn minmax(
board: &mut Board,
config: &SearchConfig,
depth: usize,
alpha: Option<EvalInt>,
beta: Option<EvalInt>,
cache: &mut TranspositionTableOpt,
) -> (Vec<Move>, SearchEval) {
// default to worst, then gradually improve
let mut alpha = alpha.unwrap_or(EVAL_WORST);
// our best is their worst
let beta = beta.unwrap_or(EVAL_BEST);
if depth == 0 {
let eval = board.eval() * EvalInt::from(board.turn.sign());
return (Vec::new(), SearchEval::Centipawns(eval));
}
let mut mvs: Vec<_> = board
.gen_moves()
.into_iter()
.collect::<Vec<_>>()
.into_iter()
.map(|mv| (move_priority(board, &mv), mv))
.collect();
// get transposition table entry
if let Some(cache) = cache {
if let Some(entry) = &cache[board.zobrist] {
// the entry has a deeper knowledge than we do, so follow its best move exactly instead of
// just prioritizing what it thinks is best
if entry.depth > depth {
mvs.clear();
}
mvs.push((EVAL_BEST, entry.best_move));
}
}
// sort moves by decreasing priority
mvs.sort_unstable_by_key(|mv| -mv.0);
let mut abs_best = SearchEval::Centipawns(EVAL_WORST);
let mut best_move: Option<Move> = None;
let mut best_continuation: Vec<Move> = Vec::new();
if mvs.is_empty() {
if board.is_check(board.turn) {
return (Vec::new(), SearchEval::Checkmate(-1));
} else {
// stalemate
return (Vec::new(), SearchEval::Centipawns(0));
}
}
for (_priority, mv) in mvs {
let anti_mv = mv.make(board);
let (continuation, score) =
minmax(board, config, depth - 1, Some(-beta), Some(-alpha), cache);
let abs_score = score.increment();
if abs_score > abs_best {
abs_best = abs_score;
best_move = Some(mv);
best_continuation = continuation;
}
alpha = max(alpha, abs_best.into());
anti_mv.unmake(board);
if alpha >= beta && config.alpha_beta_on {
// alpha-beta prune.
//
// Beta represents the best eval that the other player can get in sibling branches
// (different moves in the parent node). Alpha > beta means the eval here is _worse_
// for the other player, so they will never make the move that leads into this branch.
// Therefore, we stop evaluating this branch at all.
break;
}
}
if let Some(best_move) = best_move {
best_continuation.push(best_move);
if let Some(cache) = cache {
cache[board.zobrist] = Some(TranspositionEntry {
best_move,
eval: abs_best,
depth,
});
}
}
(best_continuation, abs_best)
}
/// Messages from the interface to the search thread.
pub enum InterfaceMsg {
Stop,
}
type InterfaceRx = mpsc::Receiver<InterfaceMsg>;
#[derive(Clone, Copy, Debug)]
pub struct TranspositionEntry {
/// best move found last time
best_move: Move,
/// last time's eval
eval: SearchEval,
/// depth of this entry
depth: usize,
}
pub type TranspositionTable = ZobristTable<TranspositionEntry>;
type TranspositionTableOpt = Option<TranspositionTable>;
/// Iteratively deepen search until it is stopped.
fn iter_deep(
board: &mut Board,
config: &SearchConfig,
interface: Option<InterfaceRx>,
cache: &mut TranspositionTableOpt,
) -> (Vec<Move>, SearchEval) {
for depth in 1..=config.depth {
let (line, eval) = minmax(board, config, depth, None, None, cache);
if let Some(ref rx) = interface {
// don't interrupt a depth 1 search so that there's at least a move to be played
if depth != 1 {
match rx.try_recv() {
Ok(msg) => match msg {
InterfaceMsg::Stop => return (line, eval),
},
Err(e) => match e {
mpsc::TryRecvError::Empty => {}
mpsc::TryRecvError::Disconnected => panic!("interface thread stopped"),
},
}
}
} else if depth == config.depth - 1 {
return (line, eval);
}
}
panic!("iterative deepening did not search at all")
}
/// Find the best line (in reverse order) and its evaluation.
pub fn best_line(
board: &mut Board,
config: Option<SearchConfig>,
interface: Option<InterfaceRx>,
cache: &mut TranspositionTableOpt,
) -> (Vec<Move>, SearchEval) {
let config = config.unwrap_or_default();
let (line, eval) = iter_deep(board, &config, interface, cache);
(line, eval)
}
/// Find the best move.
pub fn best_move(
board: &mut Board,
config: Option<SearchConfig>,
interface: Option<InterfaceRx>,
cache: &mut TranspositionTableOpt,
) -> Option<Move> {
let (line, _eval) = best_line(board, Some(config.unwrap_or_default()), interface, cache);
line.last().copied()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fen::{FromFen, ToFen};
use crate::movegen::ToUCIAlgebraic;
/// Theoretically, alpha-beta pruning should not affect the result of minmax.
#[test]
fn alpha_beta_same_result() {
let test_cases = [
"r2q1rk1/1bp1pp1p/p2p2p1/1p1P2P1/2n1P3/3Q1P2/PbPBN2P/3RKB1R b K - 5 15",
"r1b1k2r/p1qpppbp/1p4pn/2B3N1/1PP1P3/2P5/P4PPP/RN1QR1K1 w kq - 0 14",
];
for fen in test_cases {
let mut board = Board::from_fen(fen).unwrap();
let mv_no_prune = best_move(
&mut board,
Some(SearchConfig {
alpha_beta_on: false,
depth: 3,
}),
None,
&mut None,
)
.unwrap();
assert_eq!(board.to_fen(), fen);
let mv_with_prune = best_move(
&mut board,
Some(SearchConfig {
alpha_beta_on: true,
depth: 3,
}),
None,
&mut None,
)
.unwrap();
assert_eq!(board.to_fen(), fen);
println!(
"without ab prune got {}, otherwise {}, fen {}",
mv_no_prune.to_uci_algebraic(),
mv_with_prune.to_uci_algebraic(),
fen
);
assert_eq!(mv_no_prune, mv_with_prune);
}
}
}