chess_inator/src/search.rs

250 lines
7.5 KiB
Rust
Raw Normal View History

2024-10-26 19:53:20 -04:00
/*
This file is part of chess_inator.
chess_inator is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
chess_inator is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with chess_inator. If not, see https://www.gnu.org/licenses/.
Copyright © 2024 dogeystamp <dogeystamp@disroot.org>
*/
//! Game-tree search.
use crate::eval::{Eval, EvalInt};
use crate::movegen::{Move, MoveGen};
2024-10-26 19:53:20 -04:00
use crate::Board;
use std::cmp::max;
2024-10-26 21:05:51 -04:00
// min can't be represented as positive
const EVAL_WORST: EvalInt = -(EvalInt::MAX);
2024-10-27 17:34:41 -04:00
const EVAL_BEST: EvalInt = EvalInt::MAX;
#[cfg(test)]
mod test_eval_int {
use super::*;
#[test]
fn test_eval_worst_best_symm() {
// int limits will bite you if you don't test this
assert_eq!(EVAL_WORST, -EVAL_BEST);
assert_eq!(-EVAL_WORST, EVAL_BEST);
}
}
2024-10-26 21:05:51 -04:00
/// Eval in the context of search.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum SearchEval {
/// Mate in |n| - 1 half moves, negative for own mate.
Checkmate(i8),
/// Centipawn score.
Centipawns(EvalInt),
}
impl SearchEval {
/// Flip side, and increment the "mate in n" counter.
fn increment(self) -> Self {
match self {
SearchEval::Checkmate(n) => {
debug_assert_ne!(n, 0);
if n < 0 {
Self::Checkmate(-(n - 1))
} else {
Self::Checkmate(-(n + 1))
}
}
SearchEval::Centipawns(eval) => Self::Centipawns(-eval),
}
}
}
impl From<SearchEval> for EvalInt {
fn from(value: SearchEval) -> Self {
match value {
SearchEval::Checkmate(n) => {
debug_assert_ne!(n, 0);
if n < 0 {
EVAL_WORST - EvalInt::from(n)
} else {
EVAL_BEST - EvalInt::from(n)
}
}
SearchEval::Centipawns(eval) => eval,
}
}
}
impl Ord for SearchEval {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let e1 = EvalInt::from(*self);
let e2 = EvalInt::from(*other);
e1.cmp(&e2)
}
}
impl PartialOrd for SearchEval {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
/// Configuration for the gametree search.
#[derive(Clone, Copy, Debug)]
pub struct SearchConfig {
/// Enable alpha-beta pruning.
alpha_beta_on: bool,
/// Limit search depth (will probably change as quiescence search is implemented)
depth: usize,
}
impl Default for SearchConfig {
fn default() -> Self {
SearchConfig {
alpha_beta_on: true,
depth: 5,
}
}
}
/// Search the game tree to find the absolute (positive good) move and corresponding eval for the
/// current player.
2024-10-27 17:34:41 -04:00
///
/// # Arguments
///
/// * board: board position to analyze.
/// * depth: how deep to analyze the game tree.
/// * alpha: best score (absolute, from current player perspective) guaranteed for current player.
/// * beta: best score (absolute, from current player perspective) guaranteed for other player.
///
/// # Returns
///
/// The best line (in reverse move order), and its corresponding absolute eval for the current player.
fn minmax(
board: &mut Board,
config: &SearchConfig,
depth: usize,
alpha: Option<EvalInt>,
beta: Option<EvalInt>,
) -> (Vec<Move>, SearchEval) {
2024-10-27 17:34:41 -04:00
// default to worst, then gradually improve
let mut alpha = alpha.unwrap_or(EVAL_WORST);
// our best is their worst
let beta = beta.unwrap_or(EVAL_BEST);
2024-10-26 19:53:20 -04:00
if depth == 0 {
let eval = board.eval();
return (
Vec::new(),
SearchEval::Centipawns(eval * EvalInt::from(board.turn.sign())),
);
2024-10-26 19:53:20 -04:00
}
let mvs: Vec<_> = board.gen_moves().into_iter().collect();
2024-10-26 19:53:20 -04:00
let mut abs_best = SearchEval::Centipawns(EVAL_WORST);
let mut best_move: Option<Move> = None;
let mut best_continuation: Vec<Move> = Vec::new();
2024-10-26 21:05:51 -04:00
if mvs.is_empty() {
if board.is_check(board.turn) {
return (Vec::new(), SearchEval::Checkmate(-1));
2024-10-26 21:05:51 -04:00
} else {
// stalemate
return (Vec::new(), SearchEval::Centipawns(0));
2024-10-26 21:05:51 -04:00
}
}
2024-10-26 19:53:20 -04:00
for mv in mvs {
let anti_mv = mv.make(board);
let (continuation, score) = minmax(board, config, depth - 1, Some(-beta), Some(-alpha));
let abs_score = score.increment();
if abs_score > abs_best {
abs_best = abs_score;
best_move = Some(mv);
best_continuation = continuation;
}
alpha = max(alpha, abs_best.into());
2024-10-26 19:53:20 -04:00
anti_mv.unmake(board);
if alpha >= beta && config.alpha_beta_on {
2024-10-27 17:34:41 -04:00
// alpha-beta prune.
//
// Beta represents the best eval that the other player can get in sibling branches
// (different moves in the parent node). Alpha > beta means the eval here is _worse_
2024-10-27 17:34:41 -04:00
// for the other player, so they will never make the move that leads into this branch.
// Therefore, we stop evaluating this branch at all.
break;
}
2024-10-26 19:53:20 -04:00
}
if let Some(mv) = best_move {
best_continuation.push(mv);
}
(best_continuation, abs_best)
}
/// Find the best line (in reverse order) and its evaluation.
pub fn best_line(board: &mut Board, config: Option<SearchConfig>) -> (Vec<Move>, SearchEval) {
let config = config.unwrap_or_default();
let (line, eval) = minmax(board, &config, config.depth, None, None);
(line, eval)
2024-10-26 19:53:20 -04:00
}
/// Find the best move.
pub fn best_move(board: &mut Board, config: Option<SearchConfig>) -> Option<Move> {
let (line, _eval) = best_line(board, Some(config.unwrap_or_default()));
line.last().copied()
2024-10-26 19:53:20 -04:00
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fen::{FromFen, ToFen};
use crate::movegen::ToUCIAlgebraic;
/// Theoretically, alpha-beta pruning should not affect the result of minmax.
#[test]
fn alpha_beta_same_result() {
let test_cases = [
// in these cases the engines really likes to sacrifice its pieces for no gain...
"r2q1rk1/1bp1pp1p/p2p2p1/1p1P2P1/2n1P3/3Q1P2/PbPBN2P/3RKB1R b K - 5 15",
"r1b1k2r/p1qpppbp/1p4pn/2B3N1/1PP1P3/2P5/P4PPP/RN1QR1K1 w kq - 0 14",
];
for fen in test_cases {
let mut board = Board::from_fen(fen).unwrap();
let mv_no_prune = best_move(
&mut board,
Some(SearchConfig {
alpha_beta_on: false,
depth: 3,
}),
)
.unwrap();
assert_eq!(board.to_fen(), fen);
let mv_with_prune = best_move(
&mut board,
Some(SearchConfig {
alpha_beta_on: true,
depth: 3,
}),
)
.unwrap();
assert_eq!(board.to_fen(), fen);
println!(
"without ab prune got {}, otherwise {}, fen {}",
mv_no_prune.to_uci_algebraic(),
mv_with_prune.to_uci_algebraic(),
fen
);
assert_eq!(mv_no_prune, mv_with_prune);
}
}
}