feat: nnue training data pipeline tools
This commit is contained in:
parent
3885bd7948
commit
cb65671444
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +1,4 @@
|
|||||||
/target
|
/target
|
||||||
TODO.txt
|
TODO.txt
|
||||||
|
nnue/batches
|
||||||
|
nnue/venv
|
||||||
|
50
nnue/batch_pgn_data.py
Normal file
50
nnue/batch_pgn_data.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
"""
|
||||||
|
Batch PGN data into files, since the training data pipeline can't resume processing within a single file.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# /// script
|
||||||
|
# requires-python = ">=3.12"
|
||||||
|
# dependencies = [
|
||||||
|
# "chess",
|
||||||
|
# ]
|
||||||
|
# ///
|
||||||
|
|
||||||
|
from typing import Iterator
|
||||||
|
import chess.pgn
|
||||||
|
import argparse
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
"""Games to include per file in output."""
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("files", nargs="+", type=Path)
|
||||||
|
parser.add_argument("--batch-size", type=int, help="Number of games to save in each output file.", default=8)
|
||||||
|
parser.add_argument("--output-folder", type=Path, help="Folder to save batched games in.", default=Path("batches"))
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
def generate_games_in_file(path: Path) -> Iterator[chess.pgn.Game]:
|
||||||
|
"""Read games from a single PGN file."""
|
||||||
|
with open(path) as f:
|
||||||
|
while game := chess.pgn.read_game(f):
|
||||||
|
game.headers["PGNPath"] = str(path)
|
||||||
|
yield game
|
||||||
|
|
||||||
|
def generate_games() -> Iterator[chess.pgn.Game]:
|
||||||
|
"""Read games from all files."""
|
||||||
|
for path in args.files:
|
||||||
|
yield from generate_games_in_file(path)
|
||||||
|
|
||||||
|
def batch_games():
|
||||||
|
"""Write games in batches."""
|
||||||
|
output_folder: Path = args.output_folder
|
||||||
|
output_folder.mkdir(exist_ok=True)
|
||||||
|
for idx, batch in enumerate(itertools.batched(generate_games(), args.batch_size)):
|
||||||
|
with (output_folder / f"batch{idx:04}.pgn").open("w") as f:
|
||||||
|
for game in batch:
|
||||||
|
f.write(str(game) + "\n")
|
||||||
|
|
||||||
|
batch_games()
|
183
nnue/process_pgn_data.py
Normal file
183
nnue/process_pgn_data.py
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
"""
|
||||||
|
Processes PGN game data into a tsv format suitable for training.
|
||||||
|
Inputs from stdin, outputs to stdout.
|
||||||
|
|
||||||
|
Output columns:
|
||||||
|
- FEN (for reference)
|
||||||
|
- ALL 768-bit binary string representing the position
|
||||||
|
- Evaluation (centipawns) from white perspective
|
||||||
|
- Result of the game (-1, 0, 1)
|
||||||
|
|
||||||
|
This script depends on the `chess` package.
|
||||||
|
Install it, or run this script using `pipx run process_pgn_data.py`.
|
||||||
|
The script also depends on the chess_inator engine for analysis and filtering.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# /// script
|
||||||
|
# requires-python = ">=3.11"
|
||||||
|
# dependencies = [
|
||||||
|
# "chess",
|
||||||
|
# ]
|
||||||
|
# ///
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from asyncio import Queue, TaskGroup, create_task, run, sleep
|
||||||
|
import logging
|
||||||
|
import datetime
|
||||||
|
import multiprocessing
|
||||||
|
import csv
|
||||||
|
|
||||||
|
import chess
|
||||||
|
import chess.engine
|
||||||
|
from typing import AsyncIterator, Literal
|
||||||
|
from chess import pgn
|
||||||
|
from sys import stdin, stdout
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--engine",
|
||||||
|
help="Set the file path of the chess_inator engine used to analyze the positions.",
|
||||||
|
type=Path,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-workers",
|
||||||
|
help="Max concurrent workers to analyse games with (limit this to your hardware thread count).",
|
||||||
|
default=min(4, multiprocessing.cpu_count()),
|
||||||
|
type=int,
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
|
"""Skip these many plies from the start (avoid training on opening)."""
|
||||||
|
SKIP_PLIES: int = 20
|
||||||
|
|
||||||
|
"""Time limit in seconds for each position to be analyzed."""
|
||||||
|
TIME_LIMIT: float = 5
|
||||||
|
|
||||||
|
|
||||||
|
output_queue: Queue[tuple[str, str, int, Literal[-1, 0, 1]]] = Queue()
|
||||||
|
|
||||||
|
|
||||||
|
async def load_games():
|
||||||
|
"""Load a PGN file and divide up the games for the workers to process."""
|
||||||
|
while game := pgn.read_game(stdin):
|
||||||
|
yield game
|
||||||
|
|
||||||
|
|
||||||
|
async def worker(game_generator: AsyncIterator[pgn.Game]) -> None:
|
||||||
|
"""
|
||||||
|
Single worker that analyzes whole games.
|
||||||
|
|
||||||
|
Code pattern taken from https://stackoverflow.com/a/54975674.
|
||||||
|
|
||||||
|
Puts rows of output into a global queue.
|
||||||
|
"""
|
||||||
|
transport, engine = await chess.engine.popen_uci(args.engine)
|
||||||
|
await engine.configure(dict(NNUETrainInfo="true"))
|
||||||
|
|
||||||
|
async for game in game_generator:
|
||||||
|
wdl: int | None = None
|
||||||
|
|
||||||
|
match game.headers["Result"]:
|
||||||
|
case "1-0":
|
||||||
|
wdl = 1
|
||||||
|
case "0-1":
|
||||||
|
wdl = -1
|
||||||
|
case "1/2-1/2":
|
||||||
|
wdl = 0
|
||||||
|
case other_result:
|
||||||
|
logging.error("invalid 'Result' header: '%s'", other_result)
|
||||||
|
continue
|
||||||
|
|
||||||
|
board = game.board()
|
||||||
|
|
||||||
|
skipped = 0
|
||||||
|
|
||||||
|
logging.info("Processing game %s, %s (%s) between %s as White and %s as Black.", game.headers["Event"], game.headers["Site"], game.headers["Date"], game.headers["White"], game.headers["Black"])
|
||||||
|
|
||||||
|
for move in game.mainline_moves():
|
||||||
|
board.push(move)
|
||||||
|
if skipped < SKIP_PLIES:
|
||||||
|
skipped += 1
|
||||||
|
continue
|
||||||
|
result = await engine.play(
|
||||||
|
board,
|
||||||
|
chess.engine.Limit(time=TIME_LIMIT),
|
||||||
|
info=chess.engine.INFO_ALL,
|
||||||
|
game=game,
|
||||||
|
)
|
||||||
|
|
||||||
|
info_str = result.info.get("string")
|
||||||
|
if not info_str:
|
||||||
|
raise RuntimeError("Could not analyze position with engine.")
|
||||||
|
(name, quiet, eval_abs, tensor) = info_str.split()
|
||||||
|
if not name == "NNUETrainInfo":
|
||||||
|
raise RuntimeError(f"Unexpected output from engine: {info_str}")
|
||||||
|
|
||||||
|
if quiet == "non-quiet":
|
||||||
|
logging.debug("discarded as non-quiet: '%s'", board.fen())
|
||||||
|
continue
|
||||||
|
elif quiet != "quiet":
|
||||||
|
raise RuntimeError(f"Unexpected output from engine: {info_str}")
|
||||||
|
|
||||||
|
await output_queue.put((board.fen(), tensor, int(eval_abs), wdl))
|
||||||
|
|
||||||
|
|
||||||
|
async def analyse_games():
|
||||||
|
"""Task that manages reading PGNs and analyzing them."""
|
||||||
|
games_generator = load_games()
|
||||||
|
|
||||||
|
async with TaskGroup() as tg:
|
||||||
|
worker_count: int = min(args.max_workers, multiprocessing.cpu_count())
|
||||||
|
logging.info("Using %d concurrent worker tasks.", worker_count)
|
||||||
|
for i in range(worker_count):
|
||||||
|
tg.create_task(worker(games_generator))
|
||||||
|
|
||||||
|
|
||||||
|
completed = 0
|
||||||
|
start_time = datetime.datetime.now()
|
||||||
|
|
||||||
|
|
||||||
|
async def output_rows():
|
||||||
|
"""TSV writer task."""
|
||||||
|
|
||||||
|
writer = csv.writer(stdout, delimiter="\t")
|
||||||
|
while True:
|
||||||
|
row = await output_queue.get()
|
||||||
|
writer.writerow(row)
|
||||||
|
stdout.flush()
|
||||||
|
output_queue.task_done()
|
||||||
|
global completed
|
||||||
|
completed += 1
|
||||||
|
|
||||||
|
|
||||||
|
async def status_logger():
|
||||||
|
"""Periodically print status."""
|
||||||
|
while True:
|
||||||
|
await sleep(5)
|
||||||
|
logging.info(
|
||||||
|
"Completed %d rows in %f seconds.",
|
||||||
|
completed,
|
||||||
|
(datetime.datetime.now() - start_time).total_seconds(),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
analyse_task = create_task(analyse_games())
|
||||||
|
output_task = create_task(output_rows())
|
||||||
|
status_task = create_task(status_logger())
|
||||||
|
|
||||||
|
await analyse_task
|
||||||
|
output_task.cancel()
|
||||||
|
status_task.cancel()
|
||||||
|
|
||||||
|
|
||||||
|
run(main())
|
Loading…
Reference in New Issue
Block a user