Compare commits

..

4 Commits

Author SHA1 Message Date
cbad993a0a
feat: torch data loader 2024-12-30 22:53:59 -05:00
4ba02e9963
fix: training pipeline quits unused uci workers 2024-12-30 19:15:56 -05:00
174519bec5
fix: training pipeline bugs
- invalid integer cast
- "resuming" message when not resuming
2024-12-30 18:37:49 -05:00
9a2a770afb
chore: move gitignore into nnue/ 2024-12-30 18:00:28 -05:00
7 changed files with 93 additions and 11 deletions

2
.gitignore vendored
View File

@ -1,4 +1,2 @@
/target /target
TODO.txt TODO.txt
nnue/batches
nnue/venv

4
nnue/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
batches/
venv/
train_data/
__pycache__/

View File

@ -6,15 +6,19 @@ The network is trained on both self-play games, and its games on Lichess.
Both of these sources provide games in PGN format. Both of these sources provide games in PGN format.
This folder includes the following scripts: This folder includes the following scripts:
- `batch_pgn_data.py`: Combine and convert big PGN files into small chunked files. - `s1_batch_pgn_data.py`: Combine and convert big PGN files into small chunked files.
- `process_pgn_data.py`: Convert PGN data into a format suitable for training. - `s2_process_pgn_data.py`: Convert PGN data into a format suitable for training.
Example training pipeline: Example training pipeline:
```bash ```bash
# chunk all the PGN files in `games/`. outputs by default to `batches/batch%d.pgn`. # chunk all the PGN files in `games/`. outputs by default to `batches/batch%d.pgn`.
./batch_pgn_data.py games/*.pgn ./s1_batch_pgn_data.py games/*.pgn
# analyze batches 0 to 20 to turn them into training data. outputs by default to train_data/batch%d.tsv.gz. # analyze batches to turn them into training data. outputs by default to train_data/batch%d.tsv.gz.
# set max-workers to the number of hardware threads / cores you have. # set max-workers to the number of hardware threads / cores you have.
./process_pgn_data.py --engine ../target/release/chess_inator --max-workers 8 batches/batch{0..20}.pgn # this is the longest part.
./s2_process_pgn_data.py --engine ../target/release/chess_inator --max-workers 8 batches/batch*.pgn
# combine all processed data into a single training set file.
zcat train_data/*.tsv.gz | gzip > combined_training.tsv.gz
``` ```

View File

@ -18,11 +18,9 @@ import itertools
from pathlib import Path from pathlib import Path
"""Games to include per file in output."""
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("files", nargs="+", type=Path) parser.add_argument("files", nargs="+", type=Path)
parser.add_argument("--batch-size", type=int, help="Number of games to save in each output file.", default=8) parser.add_argument("--batch-size", type=int, help="Number of games to save in each output file. Set this to two to four times the amount of concurrent workers used in the processing step.", default=8)
parser.add_argument("--output-folder", type=Path, help="Folder to save batched games in.", default=Path("batches")) parser.add_argument("--output-folder", type=Path, help="Folder to save batched games in.", default=Path("batches"))
args = parser.parse_args() args = parser.parse_args()

View File

@ -160,6 +160,8 @@ async def worker(game_generator: AsyncIterator[pgn.Game]) -> None:
await output_queue.put((board.fen(), tensor, int(eval_abs), wdl)) await output_queue.put((board.fen(), tensor, int(eval_abs), wdl))
await engine.quit()
async def analyse_games(file: Path): async def analyse_games(file: Path):
"""Task that manages reading PGNs and analyzing them.""" """Task that manages reading PGNs and analyzing them."""
@ -219,6 +221,7 @@ async def main():
if skipped: if skipped:
logging.info("Resuming at file '%s'.", file) logging.info("Resuming at file '%s'.", file)
skipped = False
else: else:
logging.info("Reading file '%s'.", file) logging.info("Reading file '%s'.", file)

75
nnue/s3_train_neural_net.py Executable file
View File

@ -0,0 +1,75 @@
#!/usr/bin/env python
"""Train the NNUE weights."""
import torch
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
from dataclasses import dataclass
################################
################################
## Data loading / parsing
################################
################################
@dataclass
class Position:
"""Single board position."""
fen: str
"""Normal board representation."""
board: torch.Tensor
"""Multi-hot board representation."""
cp_eval: np.double
"""Centipawn evaluation (white perspective)."""
expected_points: np.double
"""
Points expected to be gained for white from the game, based on centipawn evaluation.
- 0: black win
- 0.5: draw
- 1: white win
"""
def sigmoid(x):
"""Calculate sigmoid of `x`, using scaling constant `K`."""
K = 150
return 1 / (1 + np.exp(-K * x / 400))
class ChessPositionDataset(Dataset):
def __init__(self, data_file: Path):
self.data = pd.read_csv(data_file, delimiter="\t")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
row = self.data.iloc[idx]
eval = np.double(row.iloc[2])
return Position(
fen=row.iloc[0],
board=torch.as_tensor([1 if c == "1" else 0 for c in row.iloc[1]]),
cp_eval=eval,
expected_points=sigmoid(eval/100),
)
if __name__ == "__main__":
full_dataset = ChessPositionDataset(Path("combined_training.tsv.gz"))
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [0.8, 0.2])
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=True)

View File

@ -397,7 +397,7 @@ pub fn eval_metrics(board: &Board) -> EvalMetrics {
let king_distance_eval = let king_distance_eval =
-advantage * i32::try_from(king_distance).unwrap() * max(7 - phase, 0) / 100; -advantage * i32::try_from(king_distance).unwrap() * max(7 - phase, 0) / 100;
let eval = pst_eval + king_distance_eval; let eval = (pst_eval + king_distance_eval).clamp(i16::MIN.into(), i16::MAX.into());
EvalMetrics { EvalMetrics {
pst_eval, pst_eval,